Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 449: 139225, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38599107

RESUMO

Heterocyclic aromatic amines (HAAs), arising as chemical derivatives during the high-temperature culinary treatment of proteinaceous comestibles, exhibit notable carcinogenic potential. In this paper, a composite aerogel (AGD-UiO-66) with high-capacity and fast adsorption of HAAs was made with anchoring defective UiO-66 (D-UiO-66) mediated by lauric acid on the backbone of cellulose nanofibers (CNF). AGD-UiO-66 with hierarchical porosity reduced the mass transfer efficiency for the adsorption of HAAs and achieved high adsorption amount (0.84-1.05 µmol/g) and fast adsorption (15 min). The isothermal adsorption model demonstrated that AGD-UiO-66 belonged to a multilayer adsorption mechanism for HAAs. Furthermore, AGD-UiO-66 was successfully used to adsorb 12 HAAs in different food (roasted beef, roasted pork, roasted salmon and marinade) with high recoveries of 94.65%-104.43%. The intrinsic potential of AGD-UiO-66 demonstrated that it could be widely applicable to the adsorption of HAAs in foods.

2.
Int J Biol Macromol ; 267(Pt 1): 131584, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38615856

RESUMO

Heterocyclic aromatic amines (HAAs) are the main carcinogens produced during thermal processing of protein-rich foods. In this paper, a composite aerogel (TOCNFCa) with a stabilized dual-network structure was prepared via a template for the in-situ synthesis of UiO-66 on cellulose for the adsorption of HAAs in food. The dual-network structure of TOCNFCa provides the composite aerogel with excellent wet strength, maintaining excellent compressive properties. With the in-situ grown UiO-66 content up to 71.89 wt%, the hierarchical porosity endowed TOCNFCa@UiO-66 with the ability to rapidly adsorb HAAs molecules with high capacity (1.44-5.82 µmol/g). Based on excellent thermal stability, adsorption capacity and anti-interference, TOCNFCa@UiO-66 achieved satisfactory recoveries of HAAs in the boiled marinade, which is faster and more economical than the conventional SPE method. Moreover, TOCNFCa@UiO-66 could maintain 84.55 % of the initial adsorption capacity after 5 times of reuse.

3.
Foods ; 13(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38472800

RESUMO

Hafnia alvei, a specific spoilage microorganism, has a strong capacity to destroy food protein and lead to spoilage. The aim of this study was to evaluate the phase-dependent regulation of lux-type genes on the spoilage characteristics of H. alvei H4. The auto-inducer synthase gene luxI and a regulatory gene luxR of the quorum sensing systems in H. alvei H4 were knocked out to construct the mutant phenotypes. On this basis, the research found that the luxI and luxR genes had a strong positive influence on not only flagella-dependent swimming ability and biofilm formation but also the production of putrescine and cadaverine. The luxR gene could downregulate putrescine production. The maximum accumulation of putrescine in wild type, ΔluxI, ΔluxR and ΔluxIR were detected at 24 h, reaching up to 695.23 mg/L, 683.02 mg/L, 776.30 mg/L and 724.12 mg/L, respectively. However, the luxI and luxR genes have a potential positive impact on the production of cadaverine. The maximum concentration of cadaverine produced by wild type, ΔluxI, ΔluxR and ΔluxIR were 252.7 mg/L, 194.5 mg/L, 175.1 mg/L and 154.2 mg/L at 72 h. Moreover, the self-organizing map analysis revealed the phase-dependent effects of two genes on spoilage properties. The luxI gene played a major role in the lag phase, while the luxR gene mainly acted in the exponential and stationary phases. Therefore, the paper provides valuable insights into the spoilage mechanisms of H. alvei H4.

4.
Microbiol Spectr ; 12(4): e0068723, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38391231

RESUMO

Quorum sensing (QS) regulation of functional metabolites is rarely reported but a common trait of some bacteria. In this study, we found that QS promoted the extracellular accumulation of glycine and serine while inhibiting the extracellular accumulation of methionine in Hafnia alvei H4. The correlation analysis of five QS signals with the above three QS-regulated amino acids suggested that these QS signals may have functional differences in amino acid regulation. The exogenous AHL add-back studies on genes involved in glycine, serine, and methionine metabolic pathway highlighted that N-octanoyl-l-homoserine lactone (C8-HSL) downregulated the expression of sdhC/fumA genes involved in the succinate to malate pathway, thereby reducing the metabolic flux of the tricarboxylic acid (TCA) cycle as an amino acid metabolism platform. Further in-depth research revealed that the QS system promoted the conversion of folate to tetrahydrofolate (THF) by positively regulating the expression of folA and folM, thus impairing the ability of folate to promote methionine accumulation. Moreover, folate positively regulated the expression of the QS signal synthesis gene luxI, promoting the synthesis of QS signals, which may further enhance the influence of the QS system on amino acid metabolism. These findings contribute to the understanding of amino acid metabolism regulated by QS and provide new perspectives for accurate control of metabolic regulation caused by QS.IMPORTANCEAs one of the important regulatory mechanisms of microorganisms, quorum sensing (QS) is involved in the regulation of various physiological activities. However, few studies on the regulation of amino acid metabolism by QS are available. This study demonstrated that the LuxI-type QS system of Hafnia alvei H4 was involved in the regulation of multiple amino acid metabolism, and different types of QS signals exhibited different roles in regulating amino acid metabolism. Additionally, the regulatory effects of the QS system on amino acid metabolism were investigated from two important cycles that influence the conversion of amino acids, including the TCA cycle and the folate cycle. These findings provide new ideas on the role of QS system in the regulation of amino acid metabolism in organisms.


Assuntos
Hafnia alvei , Percepção de Quorum , Percepção de Quorum/fisiologia , Aminoácidos , Metionina , Glicina , Ácido Fólico , Serina
5.
Foods ; 13(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38275703

RESUMO

In the food industry, foodborne spoilage bacteria often live in mixed species and attach to each other, leading to changes in spoilage characteristics. Quorum sensing (QS) has been reported to be a regulating mechanism for food spoiling by certain kinds of bacteria. Here, the contents of biofilm, extracellular polysaccharides, and biogenic amines in the coculture system of Hafnia alvei H4 and Pseudomonas fluorescens ATCC13525 were significantly reduced when the QS element of H. alvei H4 was deleted, confirming that QS of H. alvei H4 is involved in the dual-species interactions. Then, transcriptomics was used to explore the regulatory mechanism at the mRNA molecular level. The deletion of the QS element decreased the transcript levels of genes related to chemotaxis, flagellar assembly, and the two-component system pathway of H. alvei H4 in the coculture system. Furthermore, a total of 732 DEGs of P. fluorescens ATCC13525 were regulated in the dual species, which were primarily concerned with biofilm formation, ATP-binding cassette transporters, and amino acid metabolism. Taken together, the absence of the QS element of H. alvei H4 weakened the mutual cooperation of the two bacteria in the coculture system, making it a good target for managing infection with H. alvei and P. fluorescens.

6.
Int J Biol Macromol ; 255: 128092, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979755

RESUMO

Thrombosis is a serious threat to human health and life. Fucoidan, a sulfated polysaccharide from brown algae, could prevent coagulation and thrombus after intravenous administration. However, more efforts are still needed to develop its oral agent. In the present study, the absorption and excretion of fucoidan (90.8 kDa) and its degradation products, Dfuc1 (19.2 kDa) and Dfuc2 (5.5 kDa), were determined by HPLC-MS/MS after acid degradation and 1-phenyl-3-methyl-5-pyrazolone derivatization, and their anticoagulation and antithrombotic activities were evaluated in vivo after oral administration. Results showed that the maximum concentrations of fucoidan, Dfuc1 and Dfuc2 in rat plasma all achieved at 2 h after oral administration (150 mg/kg), and they were 41.1 ± 10.6 µg/mL, 45.3 ± 18.5 µg/mL and 59.3 ± 13.7 µg/mL, respectively. In addition, fucoidan, Dfuc1 and Dfuc2 could all prolong the activated partial thromboplastin time in vivo from 23.7 ± 2.7 s (blank control) to 25.1 ± 2.6 s, 27.1 ± 1.7 s and 29.4 ± 3.6 s, respectively. Moreover, fucoidan and its degradation products showed similar antithrombotic effect in carrageenan-induced thrombosis mice, and untargeted metabolomics analysis revealed that they all markedly regulated the carrageenan-induced metabolite disorders, especially the arachidonic acid metabolism. Thus, the degradation products of fucoidan with lower molecular weights are more attractive for the development of oral antithrombotic agents.


Assuntos
Anticoagulantes , Trombose , Ratos , Camundongos , Humanos , Animais , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Peso Molecular , Carragenina , Espectrometria de Massas em Tandem , Trombose/tratamento farmacológico , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico
7.
J Hazard Mater ; 465: 133160, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38064948

RESUMO

Composite aerogels, formed by the combination of nanoscale polymers and highly efficient adsorbents, offer the potential to deploy adsorbent distinct separation properties into a processable matrix. This paper presents a method for the fabrication of low energy bio-aerogels with high ductility, excellent wet strength and favorable heat resistance, based on cellulose nanofibers (CNFs) bound by calcium carbonate particles (CaCO3) via a simple process of ice induction, cross-linking during freezing and freeze-drying. Due to induced defects, two-dimensional metal-organic layers (MOLs) were rich in mesoporous structure and embedded in the aerogel (AGCa-MOL), which exhibited a powerful adsorption capacity. AGCa-MOL could take full advantage of their hierarchical pores and available surface area to obtain high adsorption capacity (0.694-5.470 µmol/g) and rapid adsorption kinetics (5 min) for 14 heterocyclic aromatic amines (HAAs). Moreover, the CaCO3 particles and MOLs gave the AGCa-MOL excellent thermal stability, so that it could maintain excellent adsorption capacity at a high temperature (100 °C) and be applied as an adsorbent to remove HAAs in the boiling marinade. The intrinsic potential of composite aerogels was revealed due to the synergistic properties of the various components in the composite aerogel.

8.
Foods ; 12(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37893700

RESUMO

In this paper, amino-carboxymethyl chitosan (ACC) was prepared through amino carboxymethylation, which introduces -COOH and -NH2 groups to the chitosan (CS) chains. Meanwhile, dialdehyde starch (DAS) was produced by oxidizing corn starch using sodium periodate. To attain the optimal loading and long-time release of ε-polylysine (ε-PL), the ACC/DAS hydrogels were synthesized through the Schiff base reaction between the amino group on ACC and the aldehyde group in DAS. The molecular structure, microcosmic properties, loading capacity, and bacteriostatic properties of the four types of hydrogels containing different mass concentrations of ACC were investigated. The results showed that the dynamic imine bond C=N existed in the ACC/DAS hydrogels, which proved that the hydrogels were formed by the cross-linking of the Schiff base reaction. With the increasing mass concentration of the ACC, the cross-sectional morphology of the hydrogel became smoother, the thermal stability increased, and the swelling behavior was gradually enhanced. The tight network structure improved the ε-PL loading efficiency, with the highest value of 99.2%. Moreover, the loading of ε-PL gave the hydrogel good antibacterial properties. These results indicate that ACC/DAS hydrogel is potential in food preservation.

9.
Microbiol Spectr ; : e0267123, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37732782

RESUMO

Hafnia species can cause food spoilage via the quorum-sensing (QS) system. Thus, strategies that target QS in these bacteria might be a good approach to safeguard the quality of processed food. In this study, the amino acid sequence of the LasI Ha protein, a key QS regulator from Hafnia alvei H4, was used to construct its 3D structure for the virtual screening of potential QS inhibitors (QSIs) from the Bioactive Compound database. Four potential QSIs were obtained, and these were all theaflavins (TFs). Among them, theaflavin-3,3´-digallate (TF3) was found to outperform the others, displaying a higher docking score according to molecular docking analysis, and required only a sub-minimal inhibitory concentration (31.25 mM) to cause a significant decrease in the production of the autoinducer N-acyl homoserine lactone in H. alvei H4 and up to 60.5% inhibition of its motility. Furthermore, molecular simulation results indicated that TF3 could stably bind to a cavity within LasI Ha to form stable hydrogen bonds and hydrophobic interactions with various key residues of the protein to exert the inhibitory effect. Thus, TF3 may be considered a potential compound to protect against food spoilage caused by H. alvei H4 via the quorum quenching. IMPORTANCE Hafnia alvei, the main strain studied in this paper, is often isolated from spoiled foods, especially refrigerated protein-based raw foods, and is generally considered to be a spoilage bacterium whose spoilage-causing properties may be closely related to its own very strong population-sensing activity, so the strategy of quorum quenching against H. alvei H4 may be a good way to guarantee the quality of processed foods. Given the current global requirements for food safety and quality, coupled with negative consumer perceptions of the excessive inclusion of synthetic chemicals in food products, the use of natural compounds as QSIs in the storage of aquatic food products would seem more attractive.

10.
Food Chem ; 428: 136775, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37423111

RESUMO

To develop food packaging with good antibacterial activity and mechanical performance, four amino carboxymethyl chitosan (ACC)//dialdehyde starch (DAS) /polyvinyl alcohol (PVA) films were prepared by Schiff base and hydrogen bond interactions for efficient loading and release of ε-polylysine (ε-PL). The effects of the Schiff base reaction on the physicochemical properties of the films were explored based on the different aldehyde group contents in DAS. The ACC//DAS4/PVA film exhibited a tensile strength of 62.5 MPa, and the water vapor and oxygen permeability was 8.77 × 10-3·g·mm/m2·d·kPa and 0.15 × 103·cm3·mm/m2·d, respectively. By leveraging the Schiff base reaction, the film swelling properties were improved by adjusting the cross-link density, mesh size, and molecular mass between the cross-links. The ACC//DAS4/PVA film could efficiently load ε-PL with a value of 98.44% and long-term release in a food simulant of 10% ethanol at 25 °C for 120 min. Moreover, the ACC-ε-PL//DAS4/PVA film was successfully used for salmon preservation.


Assuntos
Quitosana , Quitosana/química , Polivinil , Álcool de Polivinil/química , Polilisina/química , Bases de Schiff , Antibacterianos/farmacologia , Embalagem de Alimentos
11.
Food Chem ; 419: 135984, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37044056

RESUMO

This study aimed to investigate the synergistic effects of benzyl isothiocyanate (BITC) and resveratrol (RS) on Listeria monocytogenes and their application in chicken meat preservation. BITC combined with RS (BR) significantly enhanced the antimicrobial activity and inhibited the growth of Listeria monocytogenes within 24 h compared to individual treatment, as well as suppressing bacterial swimming and swarming motility, reducing biofilm formation by 56.4%, increasing cell membrane disruption, and inducing intracellular ROS surges. Synergistic effects were associated with the inhibition of biofilm formation, cell membrane destruction, and ROS production. Biofilm removal facilitated the direct antimicrobial action of BR. RS disrupted cell membrane permeability, allowing more BITC into the cells, resulting in increased intracellular antibacterial levels, cell membrane hyperpolarization, and rapid ROS accumulation. Furthermore, BR visibly slowed the microbial growth in chicken flesh stored at 25 °C and 4 °C. Therefore, BR is expected to be a new strategy for food preservation.


Assuntos
Listeria monocytogenes , Animais , Galinhas , Resveratrol/farmacologia , Carne/microbiologia , Espécies Reativas de Oxigênio/farmacologia , Conservação de Alimentos/métodos , Antibacterianos/farmacologia , Microbiologia de Alimentos , Contagem de Colônia Microbiana
12.
Polymers (Basel) ; 14(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36365646

RESUMO

The 3-(Methylthio) propyl isothiocyanate (MTPITC)-loaded inclusion complex prepared by α-cyclodextrin (α-CD) was incorporated into chitosan (CS) film to fabricate a packaging material for fresh chicken meat preservation. Scanning electron microscope images indicated homogenous dispersion of the MTPITC-α-CD in CS polymer. Fourier-transform infrared and X-ray diffraction techniques revealed that MTPITC-α-CD was incorporated into the CS film matrix by the physical interactions. The introduction of MTPITC-α-CD improved the UV-vis light-blocking ability, with a slight loss of transparency. Although the water solubility and water vapor barrier capacity were not significantly influenced by the addition of MTPITC-α-CD, the antioxidant attribute was significantly enhanced. The CS-MTPITC-α-CD film displayed obvious and sustained suppressive effects against Salmonella typhimurium, with the inhibition zone diameters of 14.7 mm at 12 h and 7.3 mm at 24 h, respectively. Moreover, the quality index analysis indicated that the CS-MTPITC-α-CD film-wrapped fresh chicken, during refrigerated storage, exhibited better preservative efficacy than the control groups, with the total viable counts of 6.5 Log CFU/g, total volatile base nitrogen of 8.4 mg/100 g, pH of 6.6, thiobarbituric acid-reactive substances of 0.2 mg/kg, and the sensory score of 5 at day 16. Collectively, these results suggest that CS-MTPITC-α-CD film is a prospective packaging candidate for delaying the quality deterioration of chicken meat.

13.
Langmuir ; 38(44): 13437-13447, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36288509

RESUMO

The removal of organic dyes and pathogenic bacteria from contaminated water remains a significant challenge. In the present study, S-type heterojunction Ag2MoO4/ZnFe2O4 (AMO/ZFO) composite nanofibers were synthesized by electrospinning and co-precipitation and fabricated into photoanodes. It is found that the constructed S-type heterojunction of AMO/ZFO composites effectively inhibits the recombination of photogenerated carriers, in addition to the benefits of more exposed active sites and a greater specific surface area. When several properties are improved, AMO/ZFO composites exhibit excellent photoelectrocatalytic performance. The results demonstrate that under visible light irradiation, the photoelectrocatalytic degradation rate of AMO/ZFO-3 to methylene blue reached 76.2% within 50 min, and the killing rate of Salmonella was 83.6% within 80 min. The enhanced photoelectrocatalytic activity was due to the synergy of both electrochemical and photocatalytic effects. More importantly, after four testing cycles, AMO/ZFO-3 still has a better ability to kill pathogenic bacteria and degrade organic dyes due to its high stability. This work provides a feasible method for oxidizing organic dyes and pathogenic bacteria.


Assuntos
Nanofibras , Catálise , Luz , Corantes/química , Azul de Metileno
14.
Foods ; 11(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36076872

RESUMO

A bioactive packaging material based on chitosan (CS) incorporated with benzyl isothiocyanate (BITC) and α-cyclodextrin (α-CD) was fabricated to evaluate its preservative effects on fresh beef stored at 4 °C for 12 d according to the quality analysis. The Fourier-transform infrared (FTIR) spectrum revealed that the major structural moiety of BITC was embedded in the cavity of α-CD, except for the thiocyanate group. FTIR and X-ray diffraction analysis further verified that intermolecular interactions were formed between the BITC-α-CD and CS film matrix. The addition of BITC-α-CD decreased the UV light transmittance of pure CS film to lower than 63% but still had enough transparency for observing packaged items. The CS-based composite film displayed a sustainable antibacterial capacity and an enhanced antioxidant activity. Moreover, the total viable counts, total volatile base nitrogen, pH, thiobarbituric acid-reactive substances, and sensory evaluation of the raw beef treated with the CS-based composite film were 6.31 log colony-forming unit (CFU)/g, 19.60 mg/100 g, 6.84, 0.26 mg/kg, and 6.5 at 12 days, respectively, indicating the favorable protective efficacy on beef. These results suggested that the fabricated CS-based composite film has the application potential to be developed as a bioactive food packaging material, especially for beef preservation.

15.
Food Res Int ; 157: 111356, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761618

RESUMO

In this study, we sequenced and characterized the genome of H. alvei to grasp the genetic basis of its physiological activities, including QS, metabolism, virulence and antibiotic resistance, and then mapped these functional gene clusters obtained from KEGG pathways to the STRING database to predict the QS-regulated targets in these pathways. H. alvei was found to possess 63 QS-related genes, most of which were closely related to amino acid metabolism, especially methionine pathway, but were not directly related to carbon and energy metabolism. Furthermore, the adhesion gene clusters were closely relevant to the QS gene clusters as well as to the infection gene clusters, while only one node (KdsD) was predicted between the QS gene clusters and infection gene clusters, suggesting that QS might influence the infection by regulating adhesion. QS might confer cross-resistance to microorganisms not only by regulating the formation of biofilms but also by affecting the efflux of antibiotics. In addition, the interspecies and intraspecies patterns of absence/presence for QS and its target genes were determined to shed light on the conservation of the QS regulatory mechanism among the phylogenetically related species. Taken together, the proposed methodology could expand the spectrum of possible applications of genome-based analysis to decipher the basic metabolic relationship of a microorganism, especially when studying new isolates.


Assuntos
Hafnia alvei , Percepção de Quorum , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Biofilmes , Percepção de Quorum/genética , Virulência
16.
ACS Appl Mater Interfaces ; 14(25): 29131-29143, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35652293

RESUMO

This work overcomes the long-standing challenge of cumbersome pretreatment methods in the detection of heterocyclic aromatic amines (HAAs). A UiO-66/nanocellulose composite aerogel (CMC-CNC-UiO-66) with layered pores and low density prepared by a self-cross-linking method is applied as a simple and rapid adsorbent for capturing 14 HAAs via strong electrostatic interactions, van der Waals force, and the steric effect. The adsorption capacity of CMC-CNC-UiO-66 to 14 HAAs reached 98.00-188.00 nmol/mg at equilibrium within 10 min. The adsorption and desorption abilities of CMC-CNC-UiO-66 were retained with values of 93.36 and 97.34% after two cycles. In the meantime, the kinetics study demonstrated the chemisorption between HAA molecules and CMC-CNC-UiO-66 due to the excellent agreement with the pseudo-second-order adsorption models. The fit with the Freundlich isotherm models suggested a multilayer adsorption mechanism between HAA molecules and materials with heterogeneous surfaces. Moreover, coupled with the ultrahigh-performance liquid chromatography-tandem mass spectrometry detection, the CMC-CNC-UiO-66 extraction process can be completed with a high average recovery ranging from 86.68 to 115.33%, indicating a potential application of CMC-CNC-UiO-66 in HAA adsorption for further quantitative analysis.

17.
Appl Environ Microbiol ; 88(13): e0069022, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35695487

RESUMO

High-throughput sequencing and high-pressure liquid chromatography (HPLC) methods were used to investigate the influences of microbial dynamics on the quality and biogenic amine (BA) content during fish sauce fermentation. The homogeneity of total viable bacteria and lactic acid bacteria in fish sauce becomes higher as fermentation progresses. Tetragenococcus was the key genus of fish sauce fermentation. Carnobacterium (38.43%) and Lentibacillus (41.01%) were the dominant genera in the samples fermented for 3 months and 18 months, respectively. These three bacterial genera were significantly related to the physicochemical characteristics and characteristic flavors of the sauces. Tetragenococcus was significantly positively correlated with nitrogen oxides, the main characteristic flavor components in fish sauce. The BA content in fish sauce fermentation increased from 106.88 to 376.03 mg/kg, and the content of histamine reached 115.30 mg/kg at the end of fermentation, indicating that fish sauce has health risks. About 66.67% of Lentibacillus isolates were able to produce a large amount of BA, suggesting that Lentibacillus was the key genus for BA accumulation in fish sauce fermentation. Research on reducing the content of BA in fish sauce by intervening with regard to the fermentation temperature showed that a safe fish sauce product could be obtained at the fermentation temperature of about 25°C. These results help us to understand the contribution of microbial community composition to fish sauce fermentation and provide a basis for improving the quality and safety of fermented fish sauce. IMPORTANCE Traditional fermentation of fish sauce is mainly carried out by complex microbial communities from raw anchovies and processing environments. However, it is still unclear how the environmental microbiota influences the quality and the safety of fish sauce products. Therefore, this study comprehensively explained the influence of microorganisms on the quality and safety of fish sauce during the fermentation process in terms of physicochemical characters, flavors, and BA. Additionally, the accumulation of BA in fish sauce fermentation was controlled by intervening in the fermentation temperature. This finding contributes to a deeper understanding of the role of environmental microbiota during fermentation and provides data support for improving the safety of fish sauce.


Assuntos
Aminas Biogênicas , Microbiologia de Alimentos , Animais , Bactérias/genética , Enterococcaceae , Fermentação , Produtos Pesqueiros/análise , Peixes/microbiologia
18.
Carbohydr Polym ; 285: 119234, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35287858

RESUMO

To improve the mechanical and barrier properties of cellulose and chitosan (CS) and to allow the application of volatile antibacterial benzyl isothiocyanate (BITC) in active packaging, a double-layer nanocomposite film was prepared. Cellulose nanofibers (CNF) were crosslinked with CS via genipin to build the substrate. Quaternized cellulose nanocrystals (QCNC) were synthesized for carrying BITC as the coating material. By the layer-by-layer self-assembly approach, CS-CNF/QCNC-BITC film was fabricated. This film possessed the tensile strength of 33.75 MPa, low permeabilities of oxygen (6.9 × 10-17 m3/s·m·Pa) and moisture (1.2 × 10-11 g/s·m·Pa), and good antibacterial activity with the inhibition zone diameters of 4.9, 4.2 and 2.7 cm against Escherichia coli, Salmonella typhimurium and Staphylococcus aureus. The total viable count, total volatile basic nitrogen and thiobarbituric acid-reactive substances of the chicken wrapped CS-CNF/QCNC-BITC were only 4.4 log CFU/g, 17.7 mg/100 g and 0.44 mg/kg at 14 days, indicating a potential application of CS-CNF/QCNC-BITC for food packaging.


Assuntos
Quitosana , Nanocompostos , Nanofibras , Antibacterianos/química , Antibacterianos/farmacologia , Celulose/química , Quitosana/química , Embalagem de Alimentos , Isotiocianatos , Nanocompostos/química , Nanofibras/química
19.
Int J Food Microbiol ; 361: 109464, 2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-34749187

RESUMO

High levels of biogenic amines (BAs) in fermented food can present a health risk to consumers. Microorganisms that can reduce BAs are widely used in fermented foods. However, the mechanism by which microorganisms reduce BAs in foods has not been explored. In this study, we investigated how Staphylococcus nepalensis 5-5 (S. nepalensis 5-5), which was a BA-degrading strain isolated from fish sauce, could reduce BA accumulation in the fish sauce. High-throughput sequencing and HPLC methods were sequentially used to determine the microbial community structure and BA content in fish sauce with/without S. nepalensis 5-5. The results showed that S. nepalensis 5-5 might be a safe strain that could improve the flavor of fish sauce while still exhibiting good BA degradation ability under a high salt environment. The content of BAs in fish sauce inoculated with S. nepalensis 5-5 was significantly decreased compared with the control fish sauce, achieving maximal reductions of 15.74, 14.18 and 16.65% in putrescine, cadaverine and histamine accumulation, respectively. According to high-throughput sequencing data, S. nepalensis 5-5 reduced the abundance of the genera positively associated with BAs, while increasing the number of bacterial genera negatively correlated with BAs in the sample and changed the correlation between some genera and BAs via species interaction. In addition, analysis of amino acid metabolism showed that S. nepalensis 5-5 might use histidine to produce metabolites other than histamine, thereby reducing the production of BAs. These findings not only explained the mechanisms by which the BA level in fish sauce could be reduced but also provided a potential means to control BA production in the fish sauce during the fermentation stage.


Assuntos
Aminas Biogênicas , Alimentos Fermentados , Animais , Fermentação , Staphylococcus
20.
Food Chem ; 368: 130768, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34392120

RESUMO

Apoptosis plays a critical role in sea cucumber autolysis. To investigate the ultraviolet (UV)-induced apoptosis, sea cucumbers with and without injection of BAPTA-AM (cytosolic calcium chelator) were exposed to UV (15 W/m2) for 30 min. The results showed that UV irradiation caused several changes in sea cucumber coelomocytes, including calcium imbalance, abnormal morphology of endoplasmic reticulum, upregulation of pro-apoptotic proteins CRT, CHOP, and caspases 9 and 3, and downregulation of anti-apoptotic protein Bcl-2. A comparison between the two groups showed that injection of the calcium chelator into sea cucumbers helped maintain coelomocyte intracellular calcium homeostasis and suppressed other abnormal changes caused by ER stress, indicating apoptosis in sea cucumbers is mediated by calcium imbalance and follows the activation of the ER stress pathway. Therefore, this study broadens understanding of the apoptotic mechanism involved in sea cucumber autolysis, which is helpful in developing preservative agents for sea cucumbers.


Assuntos
Pepinos-do-Mar , Stichopus , Animais , Autólise , Cálcio , Homeostase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...